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INTRODUCTION 
In roller bearings, there is a large number of different contacts. Depending on the load situation, each of 

these contacts influences the frictional power loss, temperature development and thus the operating capacity of the 
bearing in different ways. Under high axial loads, the rollers are supported on the ribs, as it is the case for tapered 
or cylindrical roller bearings. Therefore, a precise calculation of this contact between the front face of the rolling 
element and the rib is important to design robust bearings and to reduce frictional losses. The state of the art for 
calculating point contacts in current rolling bearing calculation programs are the theories according to HERTZ [1] or 
REUSNER [2]. With these theories, only a few geometric pairings can be described sufficiently precisely. However, 
complex geometries of the contact partners, which are typically used in modern bearings to reduce friction between 
the rolling element face and the rib, can only be described in simplified form. This leads to different discrepancies 
in the calculation of deflections, contact surfaces and pressures compared to high-quality numerical calculations 
e.g. finite element analysis (FEM). The shape of the contact zone can vary widely, which affects the pressure 
distribution and the velocity field of the sliding movement. Since the frictional power is calculated from the solid and 
the fluid friction, it cannot be described with sufficient accuracy, too. A more precise calculation method for the point 
contact can be used to design more efficient bearings. 

HOW THE CONTACT CALCULATION METHOD OPERATES 
The aim is to reduce the frictional power loss of roller bearings, especially under axial load. The use of 

simulation tools is essential to efficiently perform precise optimization. To achieve this, two basic steps – simulation 
and testing – are necessary. Within this contribution, a part of the simulation and a plausibility check against 
HERTZian theory is presented. 

Calculation of the contact point 
Since the presented Pressure-in-Point contact (PinP) method is used in multi-body simulation tools, a 

coupling of the contact calculation with the global multi-body calculation is necessary. In a first step, the position of 
the individual bodies in relation to each other must be determined. The position of the bodies' coordinate system 
and the contact point is described in the global coordinate system, as described e.g. in [3]. Starting from the global 
coordinate system, the position of the contact point is transformed into each body coordinate system. As result we 
get the position and the normal vector of the surface in the contact point. 

Generating local geometry 
Analytical equations in a Cartesian coordinate system are used to describe the geometries of the two 

contact partners, the rolling element face and the rib. Most surfaces, which appear in roller bearings, can be 
represented by the three equations of cone, sphere and torus shown in equation (1), see [4]. 

cone: 𝑥2 + 𝑦2 − 𝑚 ∗  𝑧2 = 0  

sphere: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 (1) 

torus: (𝑥2 + 𝑦2 + 𝑧2 + 𝑅2 − 𝑟2)2 = 4𝑅2 ∗ (𝑥2 + 𝑦2)  



A contact plane is placed on and aligned to the geometry in the contact point using the previously 
determined spatial and normal vectors. Using the ray equation (2) of the ray tracing method, similar to [5], the 
contact plane is projected onto the geometry so that the geometry is described by a distance function to this plane. 

 𝑠(𝑡) = 𝑞⃑ + 𝑡 ∗ 𝑛⃑⃑ (2) 

This procedure is applied to both contact bodies. The contact plane touches the geometry, i.e. the distance 
in the contact point is zero. The two geometries are superimposed in the contact planes. The difference between 
the two distance functions form a combination of the two geometries, the substitutive geometry. In a further step, 
the substitutive geometry is superposed with a penetration value d to the contact plane, so that it is cut through the 
plane. The cutting surface thus gives the contact zone. The size of the contact zone depends on the penetration 
value. To describe the material properties, the contact plane is discretized by spring elements. These elements 
represented by a modulus of subgrade reaction, which describes the material reaction in a similar way to WINKLER 
[6]. For this the reduced YOUNG’s modulus from equation (3) can be used, as described by POPOV [7]. 
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Calculation of the contact force 
Subsequently the contact force is calculated from the displacement of the springs. However, simplifying 

assumptions must be made: isotropic homogeneous material, purely elastic behavior, dry normal contact, ideally 
smooth. Under these conditions, the discrete contact force similar to POPOV [8] can be calculated with equation (4). 
A spring element of the discretization occupies a length Δl for each direction. This is deformed by the displacement 
profile uz(x,y), which is the superposed substitutional geometry. With the material properties, described by the 
reduced Young’s modulus E*, a discrete reaction force ΔFz x/y(x,y) is determined for each element. 

 ∆𝐹𝑧𝑥/𝑦
(𝑥, 𝑦) = 𝐸∗ ∗ 𝑢𝑧(𝑥, 𝑦) ∗ ∆𝑙𝑥/𝑦 = 𝐸∗ ∗ [𝑔(𝑥, 𝑦) − 𝑑] ∗ ∆𝑙𝑥/𝑦 (4) 

With (4) the discrete contact force ∆𝐹𝑧𝑥,𝑦
(𝑥, 𝑦) = ∆𝐹𝑧𝑥

(𝑥, 𝑦) ∗ 𝑋(𝑥) + ∆𝐹𝑧𝑦
(𝑥, 𝑦) ∗ 𝑌(y) on the discrete surface 

element ΔA = Δlx * Δly is calculated. X(x), Y(y) are area parameters for both directions. In order to determine the 
contact force FN, one must integrate over each line within the contact zone Ω. The condition ΔFz x,y(x,y) = 0 applies, 
if uz(x,y) ≥ 0. Thus, the contact force is calculated to: 

 𝐹𝑁 = ∫ ∆𝐹𝑧𝑥,𝑦
(𝑥, 𝑦) dxdy

𝛺

= 𝐸∗ ∫ [𝑔(𝑥, 𝑦) − 𝑑] ∗ [𝑋(𝑥) + 𝑌(𝑦)] dxdy
𝛺

 (5) 

The contact force FN is needed to solve the equilibrium of forces. Therefore, the determination of the 
penetration is an iterative process. Due to the continuous adjustment of the penetration, the contact zone and the 
contact force change until equilibrium. 

Calculation of the pressure distribution 
Similar to POPOV [8], the discrete pressure at each element can be determined as in equation (6). The 

discrete contact force ΔFz x,y(x,y) acts on the discrete surface ΔA and leads to a discrete pressure Δp(x,y). Thus the 
pressure is independent from the surface area ΔA and only dependent on material properties E* and the resulting 
penetration dres from the equilibrium of forces of the substitutive geometry g(x,y). 

 Δ𝑝(𝑥, 𝑦) =
∆𝐹𝑧𝑥,𝑦

(𝑥, 𝑦)

∆𝐴
= 𝐸∗ ∗ [𝑔(𝑥, 𝑦) − 𝑑𝑟𝑒𝑠] (6) 

This reflects the pressure distribution of the entire contact zone, which is necessary for the friction 
calculation. At the end, the pressure p is determined from the contact force FN. 

COMPARISON TO HERTZ’S THEORY 
The plausibility of the results must be examined so that 

this method can be used for the friction calculation in rolling 
bearing simulations. For this check, first the method according 
to HERTZ is used as a reference, since it is already established 
and accepted. The contact situations – sphere onto plane and 
sphere onto torus, as shown in Figure 1 – are examined and 
compared to HERTZ. The used parameters are listed in Table 
1. Different curvatures of the sphere are considered and the 
contact force is increased. The maximum pressure, the size of 
the contact zone and the penetration are evaluated. 

Figure 1: Investigated contact situations 
               a) sphere onto plane b) sphere onto torus 

a) b) 



Table 1: Used parameters for the comparison with HERTZ’s theory; left: sphere on plane; right: sphere torus 

 unit sphere plane sphere torus 

radius mm 10 – 1 000 ∞ 10 – 100 20 30 

YOUNG’s modulus MPa 210 000 210 000 210 000 210 000 

PIOSSON’s ratio  0.3 0.3 0.3 0.3 

contact force N 100 – 500 100 – 500 

Figure 2 shows the results of the two contact situations relative to HERTZ. It can be seen that the maximum 
pressure of the PinP method corresponds very well to HERTZ. The same can be seen in the size of the contact zone 
and the penetration. The values of the PinP method range between ± 5 %. Out of this, the PinP method provides 
plausible results compared to HERTZ’s theory. 

 

SUMMARY AND OUTLOOK 
To summarize, the PinP method provides similarly accurate results as the theory of HERTZ. But in addition, 

the PinP method can be used to describe more complex geometries that generate curved ellipses as contact zones. 
These can only be described simplified by HERTZ. Instead, contact situations of two contact zones are not. This is 
the great benefit of the PinP method, which is suitable for such constellations. In a further step, this has to be 
examined more precisely. For this purpose, higher numerical methods, such as FEM, will be used for a comparison. 
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Figure 2: relative comparison of PinP to HERTZ of the area, pressure and penetration 
               a) sphere onto plane                                             b) sphere onto torus 

a) b) 


